Lake Okeechobee Allocation Issues

- Supply-Side Management Agricultural Water Supply Allocations
- Caloosahatchee River Chloride Concentrations
- Stormwater Treatment Areas Water Needs

Lake Okeechobee Supply Side Management

- Current SSM "rationing" policy assumes...
 - average dry season rains
 - limited regional storage low lake levels
- Record low dry season rainfall
- Increased agricultural water demands
- LOSA agricultural uses are receiving only a small fraction of their actual supplemental irrigation demand under SSM

SSM Dry Season Outlook

- Current allocation is less than 30% of demand because present SSM Protocol assumes average dry season rainfall
- Over the next three months, agricultural demand will continue to increase if rainfall remains below average
- Adjustments to lower the reference level have been made to mitigate for the record low seasonal rainfall
- Periodic assessments of the SSM allocation will continue to be made as the dry season progresses.

SSM Wet Season Outlook

- Options to increase wet season water availability may need to be considered
 - Wet Season SSM protocol
 - Cloud-Seeding
 - Backpumping
 - Floridan wells
 - Other alternative sources
- Detailed discussion of these issues is proposed during the April Governing Board meetings

Caloosahatchee Chlorides

- Chloride levels at the Ft. Myers and Lee County
 Utilities potable water intakes on the Caloosahatchee
 River peaked quickly last week but have stabilized
 over the past few days
- At District request, USACE has restricted scheduled navigation lockages by half to reduce the continuing increase in Chloride concentrations
- Low Lake Okeechobee stages have significantly reduced the potential effectiveness of releases intended to further lower salinities

Caloosahatchee River

• In periods of low flow, salt water intrusion threatens public water systems of Lee Co. and Ft. Myers

Impacts of the Drought on the STAs

- Biological impacts
- Phosphorus impacts
- Economic impacts
- Projections of water needs

Everglades Construction Project

Completed:

STA-1W 6670 acres

STA-2 6430 acres

4118 acres STA-5

STA-6 870 acres

Under construction:

STA-1E *5350 acres*

STA-3/4 16,480 acres

Biological Impacts

- Vegetation is severely stressed
 - function of depth and duration of drought
 - different species respond differently
- Invasion of upland plants (exotics, etc.)
- Increased probability of muck fires
- When the rains finally come
 - Vegetation may return; could take a year or more
 - Herbicides may be necessary to control undesirables if submerged aquatic vegetation dies

Phosphorus Impacts

- Lost phosphorus removal capability
- Phosphorus export upon rewetting
 - WCA-2A experience: >1,000 ppb
 - 6-15 months to return to net improvement
 - Additional time for optimal (>50ppb) performance
- Bypass of untreated water during retention/regrowth
 - Potential bypass of ~60 tons of phosphorus
 - >35% of total STA treatment capacity
- Compliance with permits requires remedial measures
- Settlement Agreement recognizes force majeure

Economic Impacts

- Hard to quantify
- Public investment in phosphorus treatment:
 - (annualize capital costs + O&M) ~ \$43 per pound
 - Approximately \$5.5 million in bypassed treatment
- Post-drought herbicide applications
 - \$140 per acre ... estimated \$760,000
- Re-stocking costs (admittedly impractical)
 - Approximately \$10 million & time
- Unknown factors that can't be estimated:
 - Defending potential legal challenges
 - Impacts downstream in Everglades

Projections of Water Needs (through May)

- Total water lost since January 1:
 - approximately 16,600 acre feet or 6,600 AF/mo
- To meet performance goals of STAs:
 - 27,000 acre feet
- To keep the remaining plants alive:
 - 12,000 acre feet for the next 3 months
 - average of 4,000 acre feet/month
 - This is less than what is needed to meet the performance goals

Take Home Messages

- STA vegetation is stressed
- Impacts of drought:
 - Potential bypass of 60 tons of phosphorus to Everglades
 - Approx. \$6.3 million in lost treatment & herbicide costs
 - Other unquantifiable costs
- It is staff's intention to supply enough water to keep remaining plants alive 4,000 AF/mo (through May)

